3.201 \(\int \frac {(a+b \cosh ^{-1}(c x))^2}{x^2 \sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=186 \[ -\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{d x}-\frac {c \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \log \left (e^{-2 \cosh ^{-1}(c x)}+1\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {b^2 c \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (-e^{-2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}} \]

[Out]

-c*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-2*b*c*(a+b*arccosh(c*x))*ln(1+1/(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+b^2*c*polylog(2,-1/(c*x+(c*x-
1)^(1/2)*(c*x+1)^(1/2))^2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d
)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 194, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {5798, 5724, 5660, 3718, 2190, 2279, 2391} \[ -\frac {b^2 c \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (2,-e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {(1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}+\frac {c \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {c x-1} \sqrt {c x+1} \log \left (e^{2 \cosh ^{-1}(c x)}+1\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Int[(a + b*ArcCosh[c*x])^2/(x^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

(c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/Sqrt[d - c^2*d*x^2] - ((1 - c*x)*(1 + c*x)*(a + b*ArcC
osh[c*x])^2)/(x*Sqrt[d - c^2*d*x^2]) - (2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])*Log[1 + E^(2*A
rcCosh[c*x])])/Sqrt[d - c^2*d*x^2] - (b^2*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[2, -E^(2*ArcCosh[c*x])])/Sqrt
[d - c^2*d*x^2]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3718

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c + d*x)^(m +
 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(1 + E^(2*(-(I*e) + f*fz*x))), x],
x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5660

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Coth[x], x], x, ArcCosh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 5724

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x
_))^(p_.), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(d
1*d2*f*(m + 1)), x] + Dist[(b*c*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(f*(m
 + 1)*(1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh
[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2,
0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1] && IntegerQ[p + 1/2]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{x^2 \sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{x^2 \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {\left (2 b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {\left (2 b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x) \tanh (x) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {\left (4 b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {e^{2 x} (a+b x)}{1+e^{2 x}} \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 c \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \log \left (1+e^{2 x}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (b^2 c \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_2\left (-e^{2 \cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.86, size = 179, normalized size = 0.96 \[ \frac {\frac {a^2 \left (c^2 x^2-1\right )}{x}-\frac {2 a b \left (c^2 x^2-1\right ) \left (\frac {c x \log (c x)}{\sqrt {c x-1} \sqrt {c x+1}}-\cosh ^{-1}(c x)\right )}{x}+b^2 c \sqrt {\frac {c x-1}{c x+1}} (c x+1) \left (\text {Li}_2\left (-e^{-2 \cosh ^{-1}(c x)}\right )+\cosh ^{-1}(c x) \left (\frac {\sqrt {\frac {c x-1}{c x+1}} (c x+1) \cosh ^{-1}(c x)}{c x}-\cosh ^{-1}(c x)-2 \log \left (e^{-2 \cosh ^{-1}(c x)}+1\right )\right )\right )}{\sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])^2/(x^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

((a^2*(-1 + c^2*x^2))/x - (2*a*b*(-1 + c^2*x^2)*(-ArcCosh[c*x] + (c*x*Log[c*x])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])
))/x + b^2*c*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(ArcCosh[c*x]*(-ArcCosh[c*x] + (Sqrt[(-1 + c*x)/(1 + c*x)]*(
1 + c*x)*ArcCosh[c*x])/(c*x) - 2*Log[1 + E^(-2*ArcCosh[c*x])]) + PolyLog[2, -E^(-2*ArcCosh[c*x])]))/Sqrt[d - c
^2*d*x^2]

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b^{2} \operatorname {arcosh}\left (c x\right )^{2} + 2 \, a b \operatorname {arcosh}\left (c x\right ) + a^{2}\right )}}{c^{2} d x^{4} - d x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2)/(c^2*d*x^4 - d*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^2/(sqrt(-c^2*d*x^2 + d)*x^2), x)

________________________________________________________________________________________

maple [B]  time = 0.48, size = 513, normalized size = 2.76 \[ -\frac {a^{2} \sqrt {-c^{2} d \,x^{2}+d}}{d x}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right )^{2} c}{d \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )^{2} x \,c^{2}}{\left (c^{2} x^{2}-1\right ) d}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )^{2}}{x \left (c^{2} x^{2}-1\right ) d}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c}{d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \polylog \left (2, -\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c}{d \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) c}{d \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x \,c^{2}}{\left (c^{2} x^{2}-1\right ) d}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{x \left (c^{2} x^{2}-1\right ) d}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c}{d \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a^2/d/x*(-c^2*d*x^2+d)^(1/2)-b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/(c^2*x^2-1)*arccosh(c*x
)^2*c-b^2*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)^2*x/(c^2*x^2-1)/d*c^2+b^2*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)^2/
x/(c^2*x^2-1)/d+2*b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/(c^2*x^2-1)*arccosh(c*x)*ln(1+(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*c+b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/(c^2*x^2-1)*polylog
(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*c-2*a*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/(c^2*x^2
-1)*arccosh(c*x)*c-2*a*b*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)*x/(c^2*x^2-1)/d*c^2+2*a*b*(-d*(c^2*x^2-1))^(1/2)*
arccosh(c*x)/x/(c^2*x^2-1)/d+2*a*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/(c^2*x^2-1)*ln(1+(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {{\left (c^{2} d \sqrt {-\frac {1}{c^{4} d}} \log \left (x^{2} - \frac {1}{c^{2}}\right ) + i \, \left (-1\right )^{-2 \, c^{2} d x^{2} + 2 \, d} \sqrt {d} \log \left (-2 \, c^{2} d + \frac {2 \, d}{x^{2}}\right )\right )} a b c}{d} + b^{2} \int \frac {\log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{2}}\,{d x} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b \operatorname {arcosh}\left (c x\right )}{d x} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2}}{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-(c^2*d*sqrt(-1/(c^4*d))*log(x^2 - 1/c^2) + I*(-1)^(-2*c^2*d*x^2 + 2*d)*sqrt(d)*log(-2*c^2*d + 2*d/x^2))*a*b*c
/d + b^2*integrate(log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))^2/(sqrt(-c^2*d*x^2 + d)*x^2), x) - 2*sqrt(-c^2*d*x^2
 + d)*a*b*arccosh(c*x)/(d*x) - sqrt(-c^2*d*x^2 + d)*a^2/(d*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{x^2\,\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))^2/(x^2*(d - c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*acosh(c*x))^2/(x^2*(d - c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))**2/x**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acosh(c*x))**2/(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))), x)

________________________________________________________________________________________